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Abstract. We studySpinc-manifolds withP in(2)-action. The main tool is a vanishing theorem
for certain indices of twistedSpinc-Dirac operators. This theorem is used to show that the Witten
genus vanishes on such manifolds provided the first Chern class and the first Pontrjagin class
are torsion. We apply the vanishing theorem to cohomology complex projective spaces and give
partial evidence for a conjecture of Petrie. For example we prove that the total Pontrjagin class of
a cohomologyCP 2n with S3-action has standard form if the first Pontrjagin class has standard
form. We also determine the intersection form of certain 4-manifolds withP in(2)-action.
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1 Introduction

An important way to study smooth group actions on manifolds is based on the
Lefschetz fixed point formula (cf. [AtSeII68], [AtSiIII68]).The classical example
is the famous theorem of Atiyah and Hirzebruch which asserts that the index of
the Dirac operator on aSpin-manifold M vanishes if the groupS1 acts non-
trivially on M (cf. [AtHi70]). Consequently this index, thêA-genus, obstructs
non-trivial actions by compact connected Lie groups onSpin-manifolds. Hattori
extended this result toSpinc-manifolds in [Ha78] (cf. also [MaSc73], [Kr76])
and gave various applications forS1-equivariant stable almost complex manifolds
including cohomology complex projective spaces, complex hypersurfaces and
4-manifolds (cf. [Ha78] for details and other applications).

In [Wi86] Witten considered the index of “classical operators” on the free
loop spaceLM of a manifoldM. Although a mathematically precise definition
of such operators has yet to be given Witten computed what their index should be
by formally applying the Lefschetz fixed point formula to the naturalS1-action
on LM. In this way Witten derived invariants of the underlying manifold. It
turned out that the “signature” ofLM gives the elliptic genus (of level 2) which
had been studied before by Ochanine, Landweber, Stong and others (cf. [Oc86],
[Oc87], [LaSt88]). The invariant which corresponds to the index of the “Dirac
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operator” onLM is known as the Witten genus, the “Dolbeault operator” leads
to the family of elliptic genera of higher level. Witten conjectured that the elliptic
genus is rigid onSpin-manifolds withS1-action. Soon afterwards Taubes and
subsequently Bott and Taubes proved this conjecture (cf. [Ta89], [BoTa89]). The
rigidity of the elliptic genera of higher level was proven by Hirzebruch in [Hi88]
(cf. als [HiBeJu92], Appendix III). In [De96] we extended these rigidity results
to Spinc-manifolds (cf. also [De98]). We also showed a vanishing theorem for
certain indices ofSpinc-Dirac operators.

The main aim of this paper is to illustrate how this result may be used to
studySpinc-manifolds withP in(2)-action. In the next section we explain the
vanishing theorem. We introduce a seriesϕc(M; V, W) of indices of twisted
Spinc-Dirac operators depending on aSpinc-manifoldM and a pair of vector
bundles(V , W) overM. Given anS1-action onM, V andW Theorem 2.2 states
that the series of equivariant indicesϕc(M; V, W)S1 vanishes identically pro-
vided certain conditions on the first Chern class and equivariant first Pontrjagin
class are satisfied.

In order to apply Theorem 2.2 toSpinc-manifolds withS1-action we need
to know that the action lifts to theSpinc-structure and to the vector bundlesV

andW . Also the condition on the equivariant first Pontrjagin class needs to be
satisfied. It turns out that forS1-actions which extend to niceP in(2)-actions
(see Definition 3.4) these conditions may be fulfilled in many cases. This is the
topic of Sect. 3.

In the last section we give applications of Theorem 2.2. We show that the
Witten genus vanishes on aSpinc-manifold with niceP in(2)-action if the first
Chern class and first Pontrjagin class are torsion (see Theorem 4.1). A conjecture
of Petrie states that the total Pontrjagin class of a homotopyCP m with S1-action
has standard form. We give partial evidence for this conjecture (see Theorem
4.2). In particular we show that the conjecture is true forS3-actions if the first
Pontrjagin class has standard form andm is even (see Corollary 4.3). We also
consider 4-manifolds with niceP in(2)-action. Using Theorem 2.2 we determine
their intersection form in certain cases (see Theorem 4.8, Theorem 4.9).
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2 A vanishing theorem forSpinc-indices

In this section we state a vanishing theorem (see Theorem 2.2) for certain equiv-
ariant indices of twistedSpinc-Dirac operators (in the following also called
equivariant twistedSpinc-indices). This theorem which is proven in [De96] (cf.
also [De98]) will be applied toSpinc-manifolds withP in(2)-action in Sect. 4.

Let M be a closed smooth connected manifold and letG be a compact Lie
group (not necessarily connected) which acts smoothly onM. For aG-equivariant
elliptic differential operatorD on M the equivariant indexindG(D) is defined
as the (formal) difference of kernel and cokernel ofD:

indG(D) = ker(D) − coker(D).

SinceD is elliptic both spaces are finite dimensionalG-representations and
indG(D) is an element of the representation ringR(G). If indG(D) is trivial,
i.e. anyg ∈ G acts as the identity onindG(D), we call the operator and also its
indexrigid . If G is connectedindG(D) is trivial if and only if the restriction to
anyS1-subgroup is rigid.

It is well-known that theS1-equivariant index is rigid for the following op-
erators: the signature operator for oriented manifolds, the Dirac operator for
Spin-manifolds and the Dolbeault operator for complex manifolds.

In contrast the equivariant index of aSpinc-Dirac operator is in general not
rigid.As an example we considerCP 2 with theS1-action induced byλ(x0, x1, x2)

:= (x0, λ·x1, λ
2·x2),λ ∈ S1. LetP be aSpinc-structure for which the associated

complex line bundle overCP 2 is isomorphic toγ 5, whereγ denotes the Hopf
bundle. One can show that theS1-action lifts toP . It turns out that for any lift
the index of theSpinc-Dirac operator has the formλd(1+ λ + λ2), in particular
the index is never rigid.

In the remaining part of this section we recall a vanishing theorem of [De96].
LetM be a 2m-dimensionalS1-equivariantSpinc-manifold and let∂c denote the
Spinc-Dirac operator. LetV be anS1-equivariants-dimensional complex vector
bundle overM andW anS1-equivariant 2t-dimensionalSpin-vector bundle over
M.

From these data we build theq-power seriesR ∈ KS1(M)[[q]] of virtual
S1-equivariant vector bundles defined by

R :=
∞⊗

n=1

Sqn (̃T M ⊗R C) ⊗ Λ−1(V
∗) ⊗

∞⊗
n=1

Λ−qn(Ṽ ⊗R C) ⊗ 4(W̃ )

⊗
∞⊗

n=1

Λqn(W̃ ⊗R C).

Hereq is a formal variable,̃E denotes the reduced vector bundleE − dim(E),
4(W) is the full complex spinor bundle associated to theSpin-vector bundleW
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andΛt := ∑
Λi · t i (resp.St := ∑

Si · t i) denotes the exterior (resp. symmetric)
power operation. The tensor product is, if not indicated otherwise, taken over the
complex numbers. We extend the index functionindG to power series.

Definition 2.1. Let ϕc(M; V, W)S1 be theS1-equivariant index of theSpinc-
Dirac operator twisted withR, i.e.

ϕc(M; V, W)S1 := indS1(∂c ⊗ R) ∈ R(S1)[[q]].
In the non-equivariant situation we writeϕc(M; V, W).

Note thatϕc(M; V, W)S1 evaluated on the identity element ofS1 is equal to
ϕc(M; V, W). The series of equivariantSpinc-indicesϕc(M; V, W)S1 vanishes
provided certain conditions on the first Chern classes and first equivariant Pontr-
jagin classes are satisfied. In order to state these conditions we need to introduce
some notation. LetN be a manifold withG-action,G a compact Lie group. For
a G-equivariant virtual vector bundleE overN and a characteristic classu(E)

the corresponding equivariant characteristic class will be denoted byu(E)G. A
G-equivariantSpinc-structure ofN induces aG-equivariant complex line bun-
dleLc overN (see the beginning of the next section). Its equivariant first Chern
classc1(Lc)G will also be denoted byc1(N)G.

Finally, letπ denote the projection of the fixed point manifoldMS1
to a point

pt and letx be a fixed generator ofH 2(BS1; Z).

Theorem 2.2. ([De96], Th. 3.6,[De98], Th. 3.2)Assume that the equivariant
classp1(V +W −T M)S1 restricted toMS1

is equal toπ∗(I ·x2) modulo torsion
for some integerI and assume thatc1(M) andc1(V ) are equal modulo torsion.
If I < 0 thenϕc(M; V, W)S1 vanishes identically. �

The Spinc-indicesϕc(M; V, W) may be computed in terms of cohomology
(cf. [AtSiIII68]). If one restricts to the coefficient ofq0 in the cohomological
description ofϕc(M; V, W) in the above theorem one obtains the

Corollary 2.3. Assume the conditions given in the beginning of Theorem 2.2. If
I < 0 then〈

m∏
i=1

(
xi

e
xi
2 − e− xi

2

)
·

s∏
j=1

(
e

vj
2 − e− vj

2

)
·

t∏
k=1

(
e

wk
2 + e− wk

2

)
, [M]

〉
= 0.

�

Here±xi (resp.vj and±wk) denote the formal roots ofM (resp.V andW ), [M]
denotes the fundamental cycle ofM and〈 , 〉 denotes the Kronecker pairing.
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3 NicePin(2)-actions

In this section we give conditions under whichS1- andP in(2)-actions lift to
Spinc-structures or complex line bundles. For the facts on spectral sequences
used below we refer to [Mc85]. LetG be a compact Lie group (not necessarily
connected) which acts smoothly on the 2m-dimensionalSpinc-manifoldM and
let S1 denote a fixed subgroup ofG. LetV (resp.W ) be a complex (resp.Spin-)
vector bundle overM. In order to apply Theorem 2.2 we need to know that
theS1-action lifts to theSpinc-structure and the vector bundlesV andW . We
will use results of Hattori, Yoshida and Petrie given below. For aG-spaceX let
XG := EG×GX denote the Borel construction, whereEG is a classifying space
for G.

Theorem 3.1. ([HaYo76], Cor. 1.2)Let X be a smooth manifold with smooth
G-action and letL be a complex line bundle overX. Then theG action lifts toL

if and only ifc1(L) is in the image of the forget homomorphismH 2(XG; Z) →
H 2(X; Z). �

We recall some basic facts aboutSpinc-structures (for details we refer to
[AtBoSh64]). LetP denote a givenSpinc-structure onM. TheSpinc-principal
bundleP induces two complex line bundles.The first one is a complex line bundle
Lc overM defined by theU(1)-principal bundleP/Spin(2m) → P/Spinc(2m)∼= M using the standard embedding ofSpin(2m) into Spinc(2m). The class
c1(Lc) will be called the first Chern class ofM and is also denoted byc1(P ) or
c1(M).

The groupU(1) acts onP via the embeddingU(1) ↪→ Spinc(2m). The
quotientP/U(1) may be identified with theSO(2m)-principal bundleQ of
orthonormal frames (for the metric induced byP ). The projectionξ : P → Q is
a U(1)-principal bundle and defines the second complex line bundle which we
also denote byξ . It is well-known that the pull-back ofLc to Q is isomorphic to
ξ2. Note that theS1-action onM lifts to Q via differentials.

Theorem 3.2. ([Pe72],Th. 6.2)If theS1-action lifts to theU(1)-principal bundle
ξ : P → Q then for a modified lift theSpinc-structureP → M is S1-
equivariant. �

Combining the preceding two theorems with a spectral sequence argument one
obtains the

Proposition 3.3. If the first Betti numberb1(M) vanishes orc1(M) is a torsion
element then theS1-action lifts to theSpinc-structureP .

Proof.A proof of the first statement is given in [Ha78]. For the convenience of the
reader we prove both statements. By Theorem 3.1 theS1-action on the principal
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bundle of orthonormal framesQ lifts to theU(1)-principal bundleξ : P → Q if
and only if the first Chern class ofξ is in the image ofH 2(QS1; Z) → H 2(Q; Z).
To show this we inspect the Leray-Serre spectral sequence{Ep,q

r } for QS1 →
BS1 in integral cohomology. Note thatH ∗(BS1; Z) is a polynomial ring in one
generator of degree 2. Thus all differentials in the spectral sequence restricted to
the subgroup of bi-degree(0, 2) are trivial except maybe

d2 : E
0,2
2 → E

2,1
2

∼= H 2(BS1; H 1(Q; Z)).

If b1(M) vanishes thenb1(Q) vanishes, too (use for example the Leray-Serre
spectral sequence forQ → M). In this caseH 2(BS1; H 1(Q; Z)) = 0 and
d2 : E

0,2
2 → E

2,1
2 is the zero map. Ifc1(M) is a torsion class then the first Chern

class ofξ is also torsion since the pull-back ofLc toQ is isomorphic toξ2. Since
E

2,1
2

∼= H 2(BS1; H 1(Q; Z)) is always torsion free, the image ofc1(ξ) underd2

is zero.
Thus, in any case the classc1(ξ) lives forever, i.e. all differentials vanish on

c1(ξ). This implies thatc1(ξ) is in the image ofH 2(QS1; Z) → H 2(Q; Z). By
Theorem 3.1 and Theorem 3.2 theS1-action onQ admits a lift toP for which
theSpinc-structureP → M is S1-equivariant. This completes the proof. �

In the following section we give applications of Theorem 2.2 for certainP in(2)-
actions which we introduce next. Recall thatP in(2) is isomorphic to the nor-
malizer of a torus inS3. The groupP in(2) is a non-trivial 2-fold cover of the
orthogonal groupO(2) and may be presented by the closure of

〈λ, g | gλg−1 = λ−1, g2 = −1〉,
whereλ is a topological generator ofS1.

Definition 3.4. A P in(2)-action onM is callednice if and only if the action is
almost effective (i.e. the kernel of the action is finite) and the induced action on
H ∗(M; Z) is trivial.

We remark that a non-trivial semi-simple group actionG × M → M always
induces a niceP in(2)-action. If {±ri} denotes the set of roots ofG and if Hi

is the subgroup ofG which corresponds to±ri thenHi is isomorphic toSO(3)

or S3. Since the action is non-trivial at least one subgroupHi acts non-trivially
onM. After passing, if necessary, to the two-fold cover it follows that the group
S3 acts onM with finite kernel. SinceS3 is connected its action on the integral
cohomology ring is trivial. Hence, the induced action ofP in(2), the normalizer
of S1 in S3, is nice. Also an almost effectiveO(2)-action which is trivial on
the integral cohomology ring gives rise to a niceP in(2)-action induced by the
covering mapP in(2) → O(2). In the next lemma we collect some cohomolog-
ical data ofBP in(2) which may be derived easily from the Leray-Serre spectral
sequence forRP 2 → BP in(2) → BS3.
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Lemma 3.5. The first few integral cohomology groups ofBP in(2) are

H 0(BP in(2); Z) ∼= Z, H 1(BP in(2); Z) = 0,

H 2(BP in(2); Z) ∼= Z/2Z, H 3(BP in(2); Z) = 0.

The rational cohomology ofBP in(2) is concentrated in degree4Z. �

Next we give conditions under whichP in(2)-actions lift to complex line bundles.

Proposition 3.6. Let M be a manifold with niceP in(2)-action and letL be a
complex line bundle overM. If b1(M) vanishes orL is spin then theP in(2)-
action lifts toL.

Proof.For both statements we will use the Leray-Serre spectral sequence{Ep,q
r }

in integral cohomology for the bundleM
i

↪→ MPin(2)
π→ BP in(2). By Theorem

3.1 theP in(2)-action lifts toL if c1(L) is in the image ofi∗ : H 2(MPin(2);
Z) → H 2(M; Z). Since the action is niceP in(2) acts trivially on the integral
cohomology ring ofM. Thus theE2-term is given byEp,q

2
∼= Hp(BP in(2);

Hq(M; Z)). Note thatH 3(BP in(2); Z) = 0 (see Lemma 3.5). Ifb1(M) = 0
all differentials of the spectral sequence restricted to the subgroup of bi-degree
(0, 2) are zero. In particular they vanish onc1(L). If L is spin the same holds
true sincec1(L) is divisible by 2 and

d2 : E
0,2
2 → E

2,1
2

∼= H 2(BP in(2); H 1(M; Z)) ∼= (Z/2Z)b1(M)

takes values in aZ/2Z-module. Thusc1(L) is in the image ofi∗ : H 2(MPin(2); Z)

→ H 2(M; Z) and theP in(2)-action lifts toL by Theorem 3.1. �

Proposition 3.7. Let M be a manifold with niceP in(2)-action. Consider the
S1-action induced byS1 ↪→ P in(2). Letπ denote the projectionMS1 → BS1

and letx be a generator ofH 2(BS1; Z). If the first Pontrjagin classp1(M) is
torsion then theS1-action is fixed point free orp1(M)S1 is equal to−π∗(I · x2)

modulo torsion, whereI is a negative integer.

Proof.Assume the action has a fixed pointpt ∈ MS1
. Consider the Leray-Serre

spectral sequence{Ep,q
r } in rational cohomology. Note thatH ∗(BP in(2); Q) is

concentrated in degree 4Z (see Lemma 3.5). Since the action is niceP in(2) acts
trivially on the rational cohomology ofM. Hence

E
p,q

2
∼= Hp(BP in(2); Q) ⊗ Hq(M; Q)

vanishes ifp 6≡ 0 mod 4. We claim that

H 4(BP in(2); Q)
π∗→ H 4(MPin(2); Q)

i∗→ H 4(M; Q) (1)
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is exact: Sinceπ ◦ i maps the fibre to a point one direction is trivial. So assume
i∗(y) = 0. Sincei∗ factorizes as

H 4(MPin(2); Q) � E0,4
∞ ⊂ E

0,4
2 = H 4(M; Q)

andE0,4∞ = H 4(MPin(2); Q)/E4,0∞ the elementy is in E4,0∞ . Sinceπ∗ factorizes
as

H 4(BP in(2); Q) = E
4,0
2 � E4,0

∞ ⊂ H 4(MPin(2), Q)

we conclude thaty is in the image ofπ∗.
Next letk∗ denote the homomorphism in cohomology induced byZ ↪→ Q.

Sincek∗(p1(M)) vanishes by assumption and (1) is exactk∗(p1(M)P in(2)) is in
the image ofπ∗. By the naturality of (1) with respect to the inclusionS1 ↪→
P in(2) we conclude that

k∗(p1(M)S1) = −π∗(I · k∗(x)2).

A priori, I is a rational number. However, the restriction of the integral class
p1(M)S1 to the fixed pointpt givesI ∈ Z andI < 0. In fact,−I is equal to
the sum of squares of rotation numbers of theS1-action at the fixed pointpt .
Since theP in(2)-action is almost effective the inducedS1-action is non-trivial
and this sum is positive. �

We close this section with a simple application of the classical Lefschetz fixed
point formula for the Euler characteristic.

Lemma 3.8. AssumeP in(2) acts onM without fixed point. Then the Euler
characteristic ofM is even.

Proof.Let g ∈ P in(2) be an element withgλg−1 = λ−1 for anyλ ∈ S1. Since
the P in(2)-action has no fixed pointg acts freely onMS1

. By the Lefschetz
fixed point formula for the Euler characteristice(M) = e(MS1

). Now MS1 →
MS1

/〈g〉 is a two-fold covering. Since the Euler characteristic is multiplicative
in coverings we conclude

e(M) = e(MS1
) = 2 · e(MS1

/〈g〉) ≡ 0 mod 2.

�

4 Applications

In this section we apply Theorem 2.2 and its Corollary 2.3 toSpinc-manifolds
with niceP in(2)-action.
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4.1 We prove the vanishing ofϕc(M; 0, 0) if c1(M) and p1(M) are torsion
elements. This leads to a vanishing theorem for the Witten genus. First we recall
the classical situation.

Using the Lefschetz fixed point formula Atiyah and Hirzebruch proved in
[AtHi70] that theÂ-genus of aSpin-manifoldM with non-trivialS1-action van-
ishes. TheÂ-genus ofM is the index of the Dirac operator andAtiyah-Hirzebruch
in fact showed that the equivariant index of the Dirac operator vanishes identi-
cally.2 This result has the following generalization. IfM is anS1-equivariant
Spinc-manifold with first Chern class torsion the same argument applies to
show that the equivariantSpinc-index vanishes identically. Note that the non-
equivariantSpinc-index coincides with thêA-genus ofM if c1(M) is torsion and
coincides with the index of the Dirac operator if theSpinc-structure is induced
from aSpin-structure onM.

Next we consider the Witten genusϕW (the index of the hypothetical Dirac
operator on the free loop space) which is defined by the even power series (cf.
[Wi86], p. 165)

x

ex/2 − e−x/2

∞∏
n=1

(1 − qn)2

(1 − qnex)(1 − qne−x)
.

If M is aSpin-manifold and∂ denotes the Dirac operator then

ϕW(M) = ind(∂ ⊗
∞⊗

n=1

Sqn (̃T M)) .

Theq-power seriesϕc(M; 0, 0) of twistedSpinc-indices is related to the Witten
genus in a similar way as theSpinc-index is related to thêA-genus. Ifc1(M) is a
torsion elementϕc(M; 0, 0) coincides with the cohomological definition of the
Witten genus. IfM is spin thenϕc(M; 0, 0) coincides with the index-theoretical
definition of the Witten genus.

Theorem 4.1. LetM be aSpinc-manifold for which the first Chern classc1(M)

and the first Pontrjagin classp1(M) are torsion elements. AssumeM admits a
nice P in(2)-action. Then theS1-action induced byS1 ↪→ P in(2) lifts to the
Spinc-structure and for any such lift theq-power series of equivariant twisted
Spinc-indicesϕc(M; 0, 0)S1 vanishes identically. In particular, the Witten genus
ϕW(M) vanishes.

Proof. By Proposition 3.3 theS1-action lifts to theSpinc-structure. IfMS1
is

empty the Lefschetz fixed point formula implies that allS1-equivariant indices
on M vanish identically (cf. [AtSeII68]). In particular, the theorem follows in

2 We remark that the 2-fold action always lifts to theSpin-structure.
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this case. So assume the action has a fixed pointpt ∈ MS1
. By Proposition

3.7p1(M)S1 is equal to−π∗(I · x2) modulo torsion for some negative integer
I. Thus, we are in the position to apply Theorem 2.2 forV = W = 0 to get
the vanishing ofϕc(M; 0, 0)S1. SinceϕW(M) = ϕc(M; 0, 0) it follows that the
Witten genusϕW(M) vanishes, too. This completes the proof. �

As a consequence theS1-equivariantWitten genus vanishes on aBO〈8〉-manifold
M with niceP in(2)-action. There is a “converse” to this: LetΩ

〈8〉∗ denote the
bordism ring ofBO〈8〉-manifolds. In [De96], Proposition 4.12, we proved that
the kernel of the rational Witten genus restricted toΩ

〈8〉∗ ⊗ Q is generated by
BO〈8〉-manifolds with niceP in(2)-action, in fact with non-trivialS3-action.
Note that the kernel of the rational̂A-genus is generated bySpin-manifolds
with non-trivialS1-action (cf. [AtHi70]).

Theorem 4.1 generalizes previous results. The vanishing of the Witten genus
was proven by the author forBO〈8〉-manifolds with non-trivialS3-action in
[De94] and independently by H¨ohn in unpublished work. As Stolz pointed out
in [St96] the vanishing of the Witten genus leads to some evidence for the fol-
lowing conjecture of Stolz and H¨ohn: If M is a RiemannianBO〈8〉-manifold
with positive Ricci curvature then the Witten genus ofM vanishes. For details
we refer to [St96].

4.2The next application of Theorem 2.2 deals with manifolds having the same
integral cohomology ring asCP m. Such manifolds will be called cohomology
CP m’s. Obviously any homotopyCP m is a cohomologyCP m. The converse
holds in the simply connected case. The motivation is a conjecture of Petrie (cf.
[Pe72], Strong conjecture, p. 105) which we state in the following equivalent
form:

If M is a homotopyCP m with non-trivial smoothS1-action then the total
Pontrjagin class has standard form, i.e.p(M) = (1 + x2)m+1, wherex is a
generator ofH 2(M; Z).

The conjecture has an affirmative answer ifm < 5 or if the number of
connected components of the fixed point manifoldMS1

is less than 5 (cf. [Wa75],
[De76], [Yo76], [TsWa79], [Ma81], [Ja85]; for related results cf. [Pe72], [Pe73],
[Ha78], [Ma88], [DoMa90]). Hattori proved the conjecture in the case thatM

is stably almost complex, theS1-action preserves the stable almost complex
structure and the first Chern class has the standard form, i.e.c1(M) = (m + 1)x

(cf. [Ha78], Prop. 4.7). The next theorem which relies on Corollary 2.3 gives a
partial answer to the conjecture of Petrie.

Theorem 4.2. Let M be a cohomologyCP m with niceP in(2)-action. If m is
odd assume that theP in(2)-action has a fixed point. Letx be a generator of
H 2(M; Z) and letb be the integer defined byp1(M) = b · x2. Thenb ≤ m + 1
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and
b = m + 1 H⇒ p(M) = (1 + x2)m+1.

Before we give the proof we point out some consequences. In each complex
dimensionm ≥ 5 there are infinitely many differentiable manifoldsMi of the
same homotopy type ofCP m such that all these manifolds have standard first
Pontrjagin class but non-standard total Pontrjagin class. I.e. for eachi the class
p1(Mi) is equal to(m + 1) · x2 and the classp(Mi) is not equal to(1+ x2)m+1,
wherex denotes a generator ofH 2(Mi; Z) (cf. [Hs66] and [Li89]). Theorem 4.2
implies that for anym ≥ 5 these manifolds do not admit aP in(2)-action with
the properties stated in the theorem. We single out the following special case.

Corollary 4.3. LetM be a cohomologyCP m, m even, with standard first Pon-
trjagin class. Ifp(M) 6= (1 + x)m+1 thenM does not support a non-trivial
S3-action. �

We remark that form ≡ 1 mod 4 theα-invariant also obstructsS3-actions on
M: Theα-invariant is aKO-theoretical generalization of thêA-genus and takes
values inZ/2Z for Spin-manifolds of dimension congruent 2 mod 8. Given a
non-trivial S3-action Lawson and Yau (cf. [LaYa74]) constructed a metric with
positive scalar curvature onM. By a result of Hitchin (cf. [Hi74]) theα-invariant
vanishes onSpin-manifolds with such metrics.

The proof of Theorem 4.2 will use the following theorem which we derive
from Theorem 2.2 and from results of Sect. 3. LetV andW be sums of complex
line bundles over a 2m-dimensionalSpinc-manifoldM with b1(M) = 0.Assume
W is spin. Letvi (resp.wk) denote the first Chern class of thei-th complex line
bundle occurring as a summand ofV (resp. of thek-th complex line bundle
occurring as a summand ofW ).

Theorem 4.4. AssumeM admits a niceP in(2)-action with fixed point. Assume
c1(V ) is equal to the first Chern class ofM modulo torsion andp1(V +W −T M)

is a torsion element. Then theS1-action induced byS1 ↪→ P in(2) can be lifted
to theSpinc-structure andV andW in such a way thatϕc(M; V, W)S1 = 0.

Proof. Sinceb1(M) = 0 the inducedS1-action lifts to theSpinc-structure by
Proposition 3.3. LetL → M denote one of the complex line bundles occurring
as a summand ofV orW . By Proposition 3.6 theP in(2)-action lifts toL. We fix
a lift of theP in(2)-action to each complex line bundle occurring as a summand
in V or W .

Next we consider the equivariant classp1(V +W−T M)Pin(2). By assumption
the restriction of this class toM is zero after passing to rational cohomology.
The argument in the proof of Proposition 3.7 applies to show that

p1(V + W − T M)S1 ≡ π∗(I · x2)
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modulo torsion, whereI is an integer. At the fixed pointpt ∈ MPin(2) the
tangent bundle reduces to a non-trivial realS1-representation and may be (non-
canonically) identified with a complex representation with character

∑
λmi . At

pt a line bundleLi of V (resp.W ) reduces to a complex one dimensionalS1-
representation with characterλai (resp.λbi ). Thus the restriction of
p1(V + W − T M)S1 to pt is equal to

I · x2 = (
∑

a2
i +

∑
b2

i −
∑

m2
i ) · x2,

wherex is a generator ofH 2(BS1; Z). Since the restriction of a complex one-
dimensionalP in(2)-representation toS1 is a trivial representationai = bi = 0.
ThusI is a negative number and Theorem 2.2 gives the vanishing of
ϕc(M; V, W)S1. �

Proof of Theorem 4.2:It follows from the ring structure ofH ∗(M; Z/2Z) and
the Wu formulas thatw2(M) ≡ (m + 1) · x mod 2. The relationp1(M) ≡
w2(M)2 mod 2 impliesb ≡ m + 1 mod 2. SinceH 3(M; Z) is zeroM admits
a Spinc-structure and any classa · x, a ≡ m + 1 mod 2, can be realized as the
first Chern class of aSpinc-structure ofM.

Note that theP in(2)-action has a fixed point. Ifm is odd this is part of
the assumptions. Ifm is even this follows from Lemma 3.8 since the Euler
characteristic ofM is odd. Letpt ∈ MPin(2).

We will now show that the assumptionb > m + 1 leads to a contradiction.
Let b ≥ m + 3. Choose aSpinc-structure onM with c1(M) = (m + 1)x.
Sinceb1(M) = 0 the inducedS1-action onM lifts to anySpinc-structure (see
Proposition 3.3). LetLnx denote the complex line bundle with first Chern class
equal tonx. We consider the bundlesV = L2x + (m − 1) · Lx and W =
(b − m − 3) · Lx . Then c1(V ) = c1(M), the vector bundleW is spin and
p1(V +W −T M) = 0. By Theorem 4.4 theS1-action lifts to theSpinc-structure
andV andW in such a way thatϕc(M; V, W)S1 = 0. By Corollary 2.3 we have〈

m∏
i=1

(
xi

e
xi
2 − e− xi

2

)
· (e

x
2 − e− x

2 )m · (e
x
2 + e− x

2 )b−m−2, [M]
〉

= 0,

where±x1, . . . ,±xm denote the formal roots ofM. So〈xm, [M]〉 = 0 which
gives a contradiction. Hence,b ≤ m + 1.

Next we want to show thatb = m + 1 impliesp(M) = (1+ x2)m+1. This is
trivial for m = 1 and follows form = 2 from the signature theorem (cf. [Hi56]).
So assumem ≥ 3 andb = m + 1. Let

Â = 1 + Â1 + Â2 + . . . = 1 + −p1

24
+ 7p2

1 − 4p2

5760
+ . . .
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denote the multiplicative series forx/(ex/2 − e−x/2), i.e.Â is equal to∏l
i=1(xi/(e

xi/2 − e−xi/2)) after replacingpj by thej -th elementary symmetric
function inx2

1, . . . , x2
l . Let Â(M) be the series obtained by substituting thej -th

Pontrjagin class ofM forpj .We useTheorem 4.4 forVk := L2x+(m−3−2k)·Lx

andWk := 2k · Lx , wherek = 0, 1, . . . , [m−3
2 ]. For eachk we choose aSpinc-

structure with first Chern class equal toc1(Vk). Then Theorem 4.4 and Corollary
2.3 give〈

Â(M) · (ex − e−x) · (e
x
2 − e− x

2 )m−3−2k · (e
x
2 + e− x

2 )2k, [M]
〉
= 0. (2)

For k = 0 the corresponding identity determineŝA1(M) · xm−2, for k = 1
the corresponding identity determineŝA2(M) · xm−4 and so on. Note that the
multiplication map

H 2m−2k(M; Z) → H 2m(M; Z), y 7→ y · xk,

is injective. So these identities together determineÂj (M) for j = 1, . . . , [m−1
2 ].

The coefficient ofpj in Âj is a non-zero rational number (cf. [Hi56], Sect. 1).
SinceH ∗(M; Z) has no torsion we conclude thatpj(M) is uniquely determined
by the equations (2) forj = 1, . . . , [m−1

2 ].
We will now show that the total Pontrjagin class ofM has the standard form.

Consider first the casem odd. Thenpj(M) = 0, j > m−1
2 , for dimensional

reasons. Sop(M) is already uniquely determined by the equations (2). Since
CP m admits a non-trivialP in(2)-action with fixed point the same identities also
hold true forCP m. This impliesp(M) = (1 + x2)m+1.

Next assumem is even. Then all Pontrjagin classes ofM exceptpm
2
(M)

are already determined. The top Pontrjagin classpm
2
(M) can be computed from

the other Pontrjagin classes and the signature formula. Here we use the fact
that the coefficient ofpj in the j -th term of the multiplicative series of the
signature genus is non-zero (cf. [Hi56], Sect. 1). So again the total Pontjagin
class ofM is determined. Since all these identities also hold true forCP m we
getp(M) = (1 + x2)m+1. �

The last proof can be easily modified to study more general situations, for exam-
ple homotopy complete intersections which support a niceP in(2)-action with
fixed point. The next proposition shows that the first Pontrjagin class of such
manifolds cannot be very large. The proof which is essentially contained in the
proof of Theorem 4.2 is left to the reader.

Proposition 4.5. LetM be a2m-dimensionalSpinc-manifold withb1(M) = 0,
H 2(M; Z) = Z〈x〉 andxm 6= 0. AssumeM admits a niceP in(2)-action with
fixed point. Ifp1(M) = b · x2 thenb ≤ m + 1. �



524 A. Dessai

The proposition may be applied to homotopy complex hypersurfaces. In this
connection we mention the following result of Hattori.

Proposition 4.6. ([Ha78], Prop 3.15)LetM be a non-singular hypersurface of
degreed in CP m+1, m > 1. Let τ denote the stable almost complex structure
induced from the complex structure ofM. If M admits a non-trivialS1-action
which lifts toτ thend ≤ m + 3. �

4.3 In this section we consider 4-manifolds with niceP in(2)-action. We use
Theorem 2.2 to determine their intersection form in certain cases.

Let us first take a look at the problem of classifying (non-trivial)S1- and
S3-actions on closed manifolds in low dimensions.S1-actions on 3-manifolds
were completely classified by Orlik and Raymond in [OrRa67] (forS3-actions
cf. [As76]). The classification of 4-dimensional manifolds withS3-action was
given in [As76] and [MePa86]. Such manifolds fall into the classes:S4, ±CP 2,
homogeneousS3-bundles overS1, S2-bundles overS2 and quotients ofS2-bun-
dles overS2 by involutions. It turns out that the classification of 4-manifolds
with S1-action is much harder. Fintushel (cf. [Fi77], [Fi78]) reduced it to the
(difficult) classification of “legally-weighted” 3-manifolds. In the simply con-
nected case he and alsoYoshida (cf. [Yo78]) gave a classification up to homotopy
4-spheres: Any simply connected 4-manifold withS1-action is diffeomorphic to
Σ]k(CP 2)]m(−CP 2)]n(S2 × S2), whereΣ is a homotopy 4-sphere. All these
results are proved using techniques from the theory of transformation groups.

If one restricts to oriented 4-manifolds another tool is available: Since any
such manifold admits aSpinc-structure one may try to use the Lefschetz fixed
point formula (cf. [AtSeII68], [AtSiIII68]) for theSpinc-Dirac operator to char-
acterizeG-actions on oriented 4-manifolds. In [Ha78] Hattori proved the van-
ishing of the equivariant index of theSpinc-Dirac operator in certain cases and
used this result to derive the following

Proposition 4.7. ([Ha78], Prop. 3.14)Let M be an oriented4-manifold with
b1(M) = 0 and letτ be anS1-equivariant almost complex structure onM. If
n ∈ N dividesc1(τ ) thenn ≤ 3. If n = 3 then the Euler characteristic ofM is
equal to three times the signature ofM, i.e.e(M) = 3sign(M). �

The second part of this theorem may be rephrased in terms of the intersection form
S of M: If c1(τ ) is divisible by 3 thenS is isomorphic to(2q +1)(+1)⊕q(−1),
i.e. S is isomorphic to the intersection form of(2q + 1)(CP 2)]q(−CP 2), for
some non-negative integerq. Next we illustrate how Theorem 2.2 may be applied
to 4-manifold with niceP in(2)-action.

Proposition 4.8. LetM be an oriented4-manifold with niceP in(2)-action. Let
S denote the intersection form. Assume theP in(2)-action has a fixed point.
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1. ThenS is of odd type or trivial.
2. If M admits aP in(2)-equivariantSpinc-structure thenS is definite.

Proof. In the course of the proof we will use the fact that the inducedS1-action
lifts to anySpinc-structure: LetQ be the principal bundle of orthonormal frames.
We lift theP in(2)-action toQ via differentials. LetP be aSpinc-structure and
ξ : P → Q the associatedU(1)-principal bundle. We will show that the first
Chern class ofξ is in the image ofH 2(QS1; Z) → H 2(Q; Z). To this end we
compare the Leray-Serre spectral sequences{Ep,q

r } and{Êp,q
r } for QS1 → BS1

and QPin(2) → BP in(2), respectively. Note that in both spectral sequences
all differentials restricted to the subgroup of bi-degree(0, 2) are trivial except
maybe the second one. Since the action has a fixed pointP in(2) acts trivially on
H 1(Q; Z). Thus these differentials are given by

H 2(Q; Z) ∼= E
0,2
2

d2−→ E
2,1
2

∼= H 2(BS1; H 1(Q; Z)) ∼= Zb1(M) and

H 2(Q; Z) ∼= Ê
0,2
2

d̂2−→ Ê
2,1
2

∼= H 2(BP in(2); H 1(Q; Z)) ∼= (Z/2Z)b1(M).

Sinced2 factorizes over̂d2 and the homomorphism induced byS1 ↪→ P in(2) we
conclude thatd2 is zero onE0,2

2 . ThusH 2(QS1; Z) → H 2(Q; Z) is surjective.
By Theorem 3.1 and Theorem 3.2 theS1-action lifts toP .
Ad 1: Assume the intersection formS is even. We want to show thatS is trivial,
i.e. b2(M) = 0. SinceS is evenw2(M) is the mod 2 reduction of an integral
torsion class (cf. [HiHo58]). We choose aSpinc-structureP0 onM with c1(P0)

a torsion class and lift theS1-action toP0. As remarked earlier the argument in
[AtHi70] shows that the index of theSpinc-Dirac operator∂c for P0 vanishes:

ind(∂c) = 〈ec1(P0)/2 · (1 − p1(M)/24), [M]〉 = 0.

Sincec1(P0) is a torsion classp1(M) vanishes and by the signature theorem (cf.
[Hi56]) the signaturesign(M) = 〈p1(M)/3, [M]〉 vanishes, too.

If b2(M) 6= 0 the intersection form must be indefinite and we may choose
classesx, y ∈ H 2(M; Z) with x2 = y2 = 0 andxy 6= 0. LetV = L2x + L2y ,
whereLz denotes the complex line bundle with first Chern classz. By Proposition
3.6 theP in(2)-action lifts to each line bundle ofV . Next choose aSpinc-structure
P with c1(P ) ≡ c1(V ) modulo torsion and lift theS1-action toP . Note that
p1(V ) = 0. We are in the position to apply Corollary 2.3 forV andP as above
andW = 0. It follows thatxy = 0 contradicting the choice ofx andy. Thus
b2(M) = 0 andS is trivial.
Ad 2: AssumeS is indefinite. By the first partS is odd and hence of the form
p(+1)⊕q(−1) with basisx1, . . . , xp andy1, . . . , yq . LetLc denote the complex
line bundle overM induced by the givenP in(2)-equivariantSpinc-structure.
Thenc1(Lc) reduces tow2(M) modulo 2. SinceLc is P in(2)-equivariant the
differential H 2(M; Z) → H 2(BP in(2); H 1(M; Z)) ∼= (Z/2Z)b1(M) vanishes
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on c1(Lc) and any other integral lift ofw2(M). Let u ≡ ∑
xi + ∑

yj modulo
torsion with mod 2 reduction equal tow2(M) and lift theP in(2)-action toLu. By
Proposition 3.6 theP in(2)-action also lifts toL2x1 andL2y1. LetV = Lu +L2x1

and letW = Lu+Lu+L2y1. Finally we choose anS1-equivariantSpinc-structure
onM with first Chern class equal toc1(V ).

By the signature theorem (cf. [Hi56])〈p1(M), [M]〉 = 3(p − q). Since
p1(V + W) = p1(M) we may apply Corollary 2.3 forV , W andP as above to
derive the contradictionx2

1 = 0. ThusS is definite. �

One may use Donaldson’s deep classification theorem [Do87] (any negative
definite intersection form of an oriented closed 4-manifold is of the form(−1)⊕
. . . ⊕ (−1)) to improve the last result. Details are left to the reader.

Proposition 4.9. Let M be an oriented4-manifold with niceP in(2)-action.
Assume theP in(2)-action has a fixed point andM admits aP in(2)-equivariant
Spinc-structure. Thenb2(M) ≤ 1, i.e. the intersection form is trivial or of the
form (±1). �
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