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Abstract. We studySpin®-manifolds withPin(2)-action. The main tool is a vanishing theorem

for certain indices of twistedpin®-Dirac operators. This theorem is used to show that the Witten
genus vanishes on such manifolds provided the first Chern class and the first Pontrjagin class
are torsion. We apply the vanishing theorem to cohomology complex projective spaces and give
partial evidence for a conjecture of Petrie. For example we prove that the total Pontrjagin class of
a cohomologyC P2 with S3-action has standard form if the first Pontrjagin class has standard
form. We also determine the intersection form of certain 4-manifolds With(2)-action.
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1 Introduction

An important way to study smooth group actions on manifolds is based on the
Lefschetz fixed point formula (cf. [AtSell68], [AtSilll68]). The classical example
is the famous theorem of Atiyah and Hirzebruch which asserts that the index of
the Dirac operator on &pin-manifold M vanishes if the groug! acts non-
trivially on M (cf. [AtHi70]). Consequently this index, thé-genus, obstructs
non-trivial actions by compact connected Lie group$pi-manifolds. Hattori
extended this result t8pin®-manifolds in [Ha78] (cf. also [MaSc73], [Kr76])
and gave various applications fo¥-equivariant stable aimost complex manifolds
including cohomology complex projective spaces, complex hypersurfaces and
4-manifolds (cf. [Ha78] for details and other applications).

In [Wi86] Witten considered the index of “classical operators” on the free
loop spaceC M of a manifoldM . Although a mathematically precise definition
of such operators has yet to be given Witten computed what their index should be
by formally applying the Lefschetz fixed point formula to the natufahction
on LM. In this way Witten derived invariants of the underlying manifold. It
turned out that the “signature” &M gives the elliptic genus (of level 2) which
had been studied before by Ochanine, Landweber, Stong and others (cf. [Oc86],
[Oc87], [LaSt88]). The invariant which corresponds to the index of the “Dirac
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operator” onLM is known as the Witten genus, the “Dolbeault operator” leads
to the family of elliptic genera of higher level. Witten conjectured that the elliptic
genus is rigid onSpin-manifolds with S*-action. Soon afterwards Taubes and
subsequently Bott and Taubes proved this conjecture (cf. [Ta89], [BoTa89]). The
rigidity of the elliptic genera of higher level was proven by Hirzebruch in [Hi88]
(cf. als [HiBeJu92], Appendix III). In [De96] we extended these rigidity results
to Spin®-manifolds (cf. also [De98]). We also showed a vanishing theorem for
certain indices ofpin®-Dirac operators.

The main aim of this paper is to illustrate how this result may be used to
study Spin®-manifolds with Pin(2)-action. In the next section we explain the
vanishing theorem. We introduce a seriggM; vV, W) of indices of twisted
Spin®-Dirac operators depending onSain®-manifold M and a pair of vector
bundles(V, W) over M. Given anSt-action onM, V andW Theorem 2.2 states
that the series of equivariant indice$(M; V, W) vanishes identically pro-
vided certain conditions on the first Chern class and equivariant first Pontrjagin
class are satisfied.

In order to apply Theorem 2.2 t§pinc-manifolds withS*-action we need
to know that the action lifts to th8pin®-structure and to the vector bundlés
and W. Also the condition on the equivariant first Pontrjagin class needs to be
satisfied. It turns out that fo§'-actions which extend to nic®in(2)-actions
(see Definition 3.4) these conditions may be fulfilled in many cases. This is the
topic of Sect. 3.

In the last section we give applications of Theorem 2.2. We show that the
Witten genus vanishes onSpin°-manifold with nicePin(2)-action if the first
Chern class and first Pontrjagin class are torsion (see Theorem 4.1). A conjecture
of Petrie states that the total Pontrjagin class of a homatp with S*-action
has standard form. We give partial evidence for this conjecture (see Theorem
4.2). In particular we show that the conjecture is trueS®actions if the first
Pontrjagin class has standard form amds even (see Corollary 4.3). We also
consider 4-manifolds with nicBin(2)-action. Using Theorem 2.2 we determine
their intersection form in certain cases (see Theorem 4.8, Theorem 4.9).
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2 A vanishing theorem for Spinr°-indices

In this section we state a vanishing theorem (see Theorem 2.2) for certain equiv-
ariant indices of twistedpin®-Dirac operators (in the following also called
equivariant twistedpin®-indices). This theorem which is proven in [De96] (cf.
also [De98]) will be applied t&pin®-manifolds with Pin(2)-action in Sect. 4.

Let M be a closed smooth connected manifold andildie a compact Lie
group (not necessarily connected) which acts smoothl ofor aG-equivariant
elliptic differential operatoD on M the equivariant indexndg (D) is defined
as the (formal) difference of kernel and cokernelnf

indg (D) = ker(D) — coker (D).

Since D is elliptic both spaces are finite dimensior@representations and
indg (D) is an element of the representation riRGG). If indg (D) is trivial,
i.e. anyg € G acts as the identity oindg (D), we call the operator and also its
indexrigid . If G is connectedndg (D) is trivial if and only if the restriction to
any S*-subgroup is rigid.

It is well-known that theS*-equivariant index is rigid for the following op-
erators: the signature operator for oriented manifolds, the Dirac operator for
Spin-manifolds and the Dolbeault operator for complex manifolds.

In contrast the equivariant index ofS@in¢-Dirac operator is in general not
rigid. As an example we consid€rP? with theS*-action induced by (xg, x1, x2)

:= (xo, A-x1, A2-x2), A € St Let P be aSpin®-structure for which the associated
complex line bundle ove€ P2 is isomorphic toy®, wherey denotes the Hopf
bundle. One can show that tisé-action lifts to P. It turns out that for any lift
the index of theSpin®-Dirac operator has the foraf (14 1 4+ A?), in particular
the index is never rigid.

In the remaining part of this section we recall a vanishing theorem of [De96].
Let M be a 2n-dimensionals-equivariantSpin®-manifold and led. denote the
Spint-Dirac operator. LeV be anS!-equivariant-dimensional complex vector
bundle over andW anS*-equivariant 2-dimensionalpin-vector bundle over
M.

From these data we build thepower seriesR € Kqa(M)[[¢g]] of virtual
S-equivariant vector bundles defined by

R:=&)Sy(TM @2 C) @ A_1(V) @ (R)A_g(V ®r C) ® A(W)
n=1 n=1

® (X Ay (W @k C).
n=1

Hereq is a formal variableE denotes the reduced vector bundle- dim(E),
A(W) is the full complex spinor bundle associated to $ipén-vector bundleV
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andA, ;=Y A"t (resp.S; := )_ S -t') denotes the exterior (resp. symmetric)
power operation. The tensor product is, if not indicated otherwise, taken over the
complex numbers. We extend the index functied; to power series.

Definition 2.1. Let (M; V, W) be theS-equivariant index of theSpin®-
Dirac operator twisted withR, i.e.

O°(M; V, W) := indsi(3: ® R) € R(SHIIq]l.
In the non-equivariant situation we write*(M; V, W).

Note thatp®(M; V, W) evaluated on the identity element §t is equal to
©%(M; V, W). The series of equivariasipin®-indicesp®(M; V, W)s vanishes
provided certain conditions on the first Chern classes and first equivariant Pontr-
jagin classes are satisfied. In order to state these conditions we need to introduce
some notation. LeV be a manifold withG-action,G a compact Lie group. For
a G-equivariant virtual vector bundI& over N and a characteristic clagsE)
the corresponding equivariant characteristic class will be denotedby;. A
G-equivariantSpin®-structure ofN induces aG-equivariant complex line bun-
dle L. over N (see the beginning of the next section). Its equivariant first Chern
classci (L) will also be denoted by, (N)g.

Finally, letzr denote the projection of the fixed point manifditf” to a point
pt and letx be a fixed generator di?(BS*; Z).

Theorem 2.2. ([De96], Th. 3.6,[De98], Th. 3.2)Assume that the equivariant
classp,(V +W —T M) 1 restricted toM 5" is equal tar*(Z - x2) modulo torsion
for some integeZ and assume that (M) andc;(V) are equal modulo torsion.
If Z < 0theng®(M; V, W) vanishes identically. 0

The Spin®-indices¢p®(M; V, W) may be computed in terms of cohomology
(cf. [AtSillI68]). If one restricts to the coefficient af° in the cohomological
description ofp®(M; V, W) in the above theorem one obtains the

Corollary 2.3. Assume the conditions given in the beginning of Theorem 2.2. If
7 < Othen

N

<ﬁ (o) TI(e* =) TI(e% +e %), [M]> N

.\'7,‘
=1 \€2 —e 2/ 4 k=1

Here+tx; (resp.v; and+wy) denote the formal roots aff (resp.V andW), [M]
denotes the fundamental cycle®fand( , ) denotes the Kronecker pairing.
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3 Nice Pin(2)-actions

In this section we give conditions under whish- and Pin(2)-actions lift to
Spin®-structures or complex line bundles. For the facts on spectral sequences
used below we refer to [Mc85]. L&t be a compact Lie group (not necessarily
connected) which acts smoothly on the-2imensionalSpin°-manifold M and

let S denote a fixed subgroup 6f. Let V (resp.W) be a complex (resgipin-)

vector bundle oveM. In order to apply Theorem 2.2 we need to know that
the S*-action lifts to theSpinC-structure and the vector bundl&sand W. We

will use results of Hattori, Yoshida and Petrie given below. F6i-apaceX let

X := EG x X denote the Borel construction, whef& is a classifying space

for G.

Theorem 3.1. ([HaYo76], Cor. 1.2)Let X be a smooth manifold with smooth
G-action and letZ. be a complex line bundle ovér. Then theG action lifts toL
if and only ifc1(L) is in the image of the forget homomorphi$fd(Xg; Z) —
H%*(X; 7). O

We recall some basic facts abofipin®-structures (for details we refer to
[AtBoSh64]). LetP denote a giverspin-structure onM. The Spin-principal
bundleP induces two complex line bundles. The first one is a complex line bundle
L. overM defined by thd/ (1)-principal bundleP /Spin(2m) — P/Spin®(2m)

= M using the standard embedding §pin(2m) into Spin®(2m). The class
c1(L¢) will be called the first Chern class & and is also denoted by (P) or
Cl(M).

The groupU (1) acts onP via the embeddind/(1) < Spin®(2m). The
quotient P/U (1) may be identified with thes O (2m)-principal bundleQ of
orthonormal frames (for the metric induced BY. The projectior : P — Qis
a U (1)-principal bundle and defines the second complex line bundle which we
also denote by. It is well-known that the pull-back af to Q is isomorphic to
£2. Note that thes*-action onM lifts to Q via differentials.

Theorem 3.2. ([Pe72] Th. 6.2)If the S*-action lifts to thel/ (1)-principal bundle
£ : P — Q then for a modified lift theSpin®-structure P — M is S*-
equivariant. d

Combining the preceding two theorems with a spectral sequence argument one
obtains the

Proposition 3.3. If the first Betti numbeb; (M) vanishes ok, (M) is a torsion
element then th&*-action lifts to theSpin¢-structureP.

Proof.A proof of the first statement is given in [Ha78]. For the convenience of the
reader we prove both statements. By Theorem 3. Ftha&ction on the principal
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bundle of orthonormal frameg lifts to the U (1)-principal bundle : P — Q if

and only if the first Chern class éfis in the image oH?(Q1; Z) — H?(Q; 7).

To show this we inspect the Leray-Serre spectral sequgfité} for Qg1 —

BS' in integral cohomology. Note thaf *(B S*; Z) is a polynomial ring in one
generator of degree 2. Thus all differentials in the spectral sequence restricted to
the subgroup of bi-degre®, 2) are trivial except maybe

dy: ES? — E2' = H?(BSY; HY(Q: 7).

If b1(M) vanishes thei,(Q) vanishes, too (use for example the Leray-Serre
spectral sequence fa@ — M). In this caseH?(BS*; H*(Q; 7)) = 0 and
dy: Eg’z — E§’1 is the zero map. Ié,(M) is a torsion class then the first Chern
class oft is also torsion since the pull-back bf to Q is isomorphic tc?2. Since
ES' = H?2(BSY; HY(Q; Z)) is always torsion free, the image af(£) underd,

is zero.

Thus, in any case the clasg¢) lives forever, i.e. all differentials vanish on
c1(£). This implies that(£) is in the image ofH?(Qg1; Z) — H?(Q; 7). By
Theorem 3.1 and Theorem 3.2 tB&action onQ admits a lift toP for which
the Spin‘-structureP — M is S'-equivariant. This completes the proof. O

In the following section we give applications of Theorem 2.2 for cergaim(2)-
actions which we introduce next. Recall thain (2) is isomorphic to the nor-
malizer of a torus ins. The groupPin(2) is a non-trivial 2-fold cover of the
orthogonal groug (2) and may be presented by the closure of

(hg | grgt=2"" g7 =1y,
wherea is a topological generator of*.

Definition 3.4. A Pin(2)-action onM is calledniceif and only if the action is
almost effective (i.e. the kernel of the action is finite) and the induced action on
H*(M; Z) is trivial.

We remark that a non-trivial semi-simple group act@nx M — M always
induces a nicePin(2)-action. If {£r;} denotes the set of roots of and if H;

is the subgroup of; which corresponds térr; then H; is isomorphic taS O (3)

or §3. Since the action is non-trivial at least one subgréli@cts non-trivially

on M. After passing, if necessary, to the two-fold cover it follows that the group
$% acts onM with finite kernel. Sinces® is connected its action on the integral
cohomology ring is trivial. Hence, the induced actionraf:(2), the normalizer

of ST in S8, is nice. Also an almost effectiv® (2)-action which is trivial on
the integral cohomology ring gives rise to a nieén(2)-action induced by the
covering mapPin(2) — 0(2). In the next lemma we collect some cohomolog-
ical data ofB Pin(2) which may be derived easily from the Leray-Serre spectral
sequence foRP? — BPin(2) — BS°.
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Lemma 3.5. The first few integral cohomology groups®Pin(2) are

H°(BPin?2);,72) =7, HY(BPin(2);7Z) =0,
H2%(BPin(2);72) = 7/27, H3BPin(2);Z) =0.

The rational cohomology a® Pin(2) is concentrated in degred?. O

Next we give conditions under whidghi n (2)-actions liftto complex line bundles.

Proposition 3.6. Let M be a manifold with nicePin(2)-action and letL be a
complex line bundle ove¥!. If by(M) vanishes oIL is spin then thePin(2)-
action lifts toL.

Proof. For both statements we will use the Leray-Serre spectral seqUEfiée

in integral cohomology for the bundheg < Mpine) % BPin(2). By Theorem

3.1 the Pin(2)-action lifts to L if ¢1(L) is in the image of* : HZ(Mpm(g);

7) — H?*(M;Z). Since the action is nic®in(2) acts trivially on the integral
cohomology ring ofM. Thus theE,-term is given byES'? = H?(BPin(2);
H?(M; 7)). Note thatH3(BPin(2); Z) = 0 (see Lemma 3.5). b;(M) = 0

all differentials of the spectral sequence restricted to the subgroup of bi-degree
(0, 2) are zero. In particular they vanish en(L). If L is spin the same holds
true sincecy (L) is divisible by 2 and

dy : ES? > E2'= H*(BPin(2); H\(M; 7)) = (Z/27)"™

takes valuesinZ/2Z-module. Thus;(L) isinthe image of* : H3(Mp;,(2); Z)
— H?(M; Z) and thePin(2)-action lifts toL by Theorem 3.1. O

Proposition 3.7. Let M be a manifold with nicePin(2)-action. Consider the
St-action induced bys! < Pin(2). Letw denote the projectiodd s — BS?!
and letx be a generator off2(BS*; Z). If the first Pontrjagin clasp1(M) is
torsion then thes*-action is fixed point free op; (M) is equal to—7*(Z - x?)
modulo torsion, wher& is a negative integer.

Proof. Assume the action has a fixed poprt € M5". Consider the Leray-Serre
spectral sequende:/?} in rational conomology. Note th& *(B Pin(2); Q) is
concentrated in degre&4see Lemma 3.5). Since the action is niti:(2) acts
trivially on the rational cohomology a¥7. Hence

Ey? = HP(BPin(2); Q) ® H(M; Q)
vanishes ifp # 0 mod 4. We claim that

HYBPin(2); Q) > H Mpina): Q) > HYM: Q) 1)



518 A. Dessai

is exact: Sincer o i maps the fibre to a point one direction is trivial. So assume
i*(y) = 0. Sincei* factorizes as

H*(Mpin2; Q) - E%* c ES* = HY(M; Q)

and E2* = H*(Mp;,2); Q)/EZP the elemeny is in E20. Sincern* factorizes
as
H*BPin(2); Q) = E3° —» EX° C H*(Mpju2), Q)

we conclude that is in the image ofr*.

Next letk, denote the homomorphism in cohomology induce@by> Q.
Sincek, (p1(M)) vanishes by assumption and (1) is exap1(M) pin2) IS in
the image ofzr*. By the naturality of (1) with respect to the inclusish <
Pin(2) we conclude that

ku(pr(M)g1) = —*(Z - ko (x)?).

A priori, Z is a rational number. However, the restriction of the integral class
p1(M) 51 to the fixed pointpt givesZ € Z andZ < 0. In fact,—Z is equal to
the sum of squares of rotation numbers of feaction at the fixed poinp:.
Since thePin(2)-action is almost effective the induced-action is non-trivial
and this sum is positive. O

We close this section with a simple application of the classical Lefschetz fixed
point formula for the Euler characteristic.

Lemma 3.8. AssumePin(2) acts onM without fixed point. Then the Euler
characteristic ofM is even.

Proof.Let g € Pin(2) be an element witgig=! = A~ for any A e S*. Since
the Pin(2)-action has no fixed poing acts freely onMS". By the Lefschetz
fixed point formula for the Euler characteristicM) = e(MSl). Now MS" —
M5"/(g) is a two-fold covering. Since the Euler characteristic is multiplicative
in coverings we conclude

e(M) =e(MS) =2 e(M5 /(g)) = 0 mod 2

4 Applications

In this section we apply Theorem 2.2 and its Corollary 2.3én°-manifolds
with nice Pin(2)-action.
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4.1 We prove the vanishing of®(M; 0, 0) if c1(M) and p1(M) are torsion
elements. This leads to a vanishing theorem for the Witten genus. First we recall
the classical situation.

Using the Lefschetz fixed point formula Atiyah and Hirzebruch proved in
[AtHi70] that the A-genus of & pin-manifold M with non-trivial S*-action van-
ishes. Thed-genus of\/ is the index of the Dirac operator and Atiyah-Hirzebruch
in fact showed that the equivariant index of the Dirac operator vanishes identi-
cally? This result has the following generalization.M is an S-equivariant
Spin®-manifold with first Chern class torsion the same argument applies to
show that the equivariarfipin®-index vanishes identically. Note that the non-
equivariantSpin®-index coincides with thé-genus ofV if ¢,(M) is torsion and
coincides with the index of the Dirac operator if thigin®-structure is induced
from aSpin-structure onv.

Next we consider the Witten gengs, (the index of the hypothetical Dirac
operator on the free loop space) which is defined by the even power series (cf.

[Wi86], p. 165)

X ﬁ (1—g¢")?
eX/2 — o—x/2 o (1 _ qnex)(l _ qnefx) '
If M is aSpin-manifold andd denotes the Dirac operator then

ow(M) = ind(d ® R)S,(TM)) .
n=1

Theg-power seriep®(M; 0, 0) of twistedSpin®-indices is related to the Witten
genus in a similar way as thin®-index is related to thé-genus. Ife; (M) is a
torsion elemen©(M; 0, 0) coincides with the cohomological definition of the
Witten genus. 1V is spin thenp®(M; 0, 0) coincides with the index-theoretical
definition of the Witten genus.

Theorem 4.1. Let M be aSpin°-manifold for which the first Chern class(M)
and the first Pontrjagin claspi(M) are torsion elements. Assume admits a
nice Pin(2)-action. Then thes*-action induced bys* < Pin(2) lifts to the
Spin¢-structure and for any such lift thg-power series of equivariant twisted
Spin-indicesp®(M; 0, 0) ;2 vanishes identically. In particular, the Witten genus
ow (M) vanishes.

Proof. By Proposition 3.3 thes-action lifts to theSpin®-structure. IfM5" is
empty the Lefschetz fixed point formula implies that $dtequivariant indices
on M vanish identically (cf. [AtSell68]). In particular, the theorem follows in

2 We remark that the 2-fold action always lifts to thigin-structure.
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this case. So assume the action has a fixed paing M By Proposition
3.7 p1(M) ¢ is equal to—7*(Z - x?) modulo torsion for some negative integer
Z. Thus, we are in the position to apply Theorem 2.2¥oe= W = 0 to get
the vanishing of®(M; 0, 0)51. Sincepy (M) = ¢°(M; 0, 0) it follows that the
Witten genuspyw (M) vanishes, too. This completes the proof. O

As a consequence tlsé-equivariant Witten genus vanishes aB @ (8)-manifold

M with nice Pin(2)-action. There is a “converse” to this: L& denote the
bordism ring ofB O (8)-manifolds. In [De96], Proposition 4.12, we proved that
the kernel of the rational Witten genus restricted2ff’ ® Q is generated by
B O (8)-manifolds with nicePin(2)-action, in fact with non-trivialS3-action.
Note that the kernel of the rationadi-genus is generated bSpin-manifolds
with non-trivial S-action (cf. [AtHi70]).

Theorem 4.1 generalizes previous results. The vanishing of the Witten genus
was proven by the author faB O (8)-manifolds with non-trivialS3-action in
[De94] and independently bydtih in unpublished work. As Stolz pointed out
in [St96] the vanishing of the Witten genus leads to some evidence for the fol-
lowing conjecture of Stolz and ¢hin: If M is a RiemanniarB O (8)-manifold
with positive Ricci curvature then the Witten genusidfvanishes. For details
we refer to [St96].

4.2 The next application of Theorem 2.2 deals with manifolds having the same
integral cohomology ring a€ P™. Such manifolds will be called cohomology
CpP™'s. Obviously any homotopy_ P™ is a cohomologyC P™. The converse
holds in the simply connected case. The motivation is a conjecture of Petrie (cf.
[Pe72], Strong conjecture, p. 105) which we state in the following equivalent
form:

If M is a homotopyCP™ with non-trivial smoothS*-action then the total
Pontrjagin class has standard form, iggM) = (1 + x?)"*%, wherex is a
generator ofH?(M; Z).

The conjecture has an affirmative answewmif < 5 or if the number of
connected components of the fixed point manifeldl is less than 5 (cf. [Wa75],
[De76], [Yo76], [TsWa79], [Ma81], [Ja85]; for related results cf. [Pe72], [Pe73],
[Ha78], [Ma88], [DoMa90]). Hattori proved the conjecture in the case Mat
is stably almost complex, th&!-action preserves the stable almost complex
structure and the first Chern class has the standard forr, () = (m + 1)x
(cf. [Ha78], Prop. 4.7). The next theorem which relies on Corollary 2.3 gives a
partial answer to the conjecture of Petrie.

Theorem 4.2. Let M be a cohomolog{ P™ with nice Pin(2)-action. Ifm is
odd assume that th&in(2)-action has a fixed point. Let be a generator of
H?(M; Z) and letb be the integer defined yp(M) = b - x?. Thenb <m + 1
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and
b=m+1= p(M) =1+ x>)"*+1,

Before we give the proof we point out some consequences. In each complex
dimensionm > 5 there are infinitely many differentiable manifold of the

same homotopy type df P™ such that all these manifolds have standard first
Pontrjagin class but non-standard total Pontrjagin class. |.e. forighetclass
p1(M;) is equal to(m + 1) - x? and the clasg(M;) is not equal ta1 + x2)"+1,
wherex denotes a generator &f?(M;; Z) (cf. [Hs66] and [Li89]). Theorem 4.2
implies that for anyn > 5 these manifolds do not admitRn(2)-action with

the properties stated in the theorem. We single out the following special case.

Corollary 4.3. Let M be a cohomolog{ P™, m even, with standard first Pon-
trjagin class. If p(M) # (1 + x)"*! then M does not support a non-trivial
S3-action. O

We remark that forn = 1 mod 4 thex-invariant also obstruct§®-actions on
M: Thea-invariant is ak O-theoretical generalization of the-genus and takes
values inZ/27 for Spin-manifolds of dimension congruent 2 mod 8. Given a
non-trivial $-action Lawson and Yau (cf. [LaYa74]) constructed a metric with
positive scalar curvature avf. By a result of Hitchin (cf. [Hi74]) thex-invariant
vanishes orfpin-manifolds with such metrics.

The proof of Theorem 4.2 will use the following theorem which we derive
from Theorem 2.2 and from results of Sect. 3. VeandW be sums of complex
line bundles over ard-dimensional pin‘-manifold M with b, (M) = 0. Assume
W is spin. Letv; (resp.wy) denote the first Chern class of théh complex line
bundle occurring as a summand %f (resp. of thek-th complex line bundle
occurring as a summand of).

Theorem 4.4. Assume&W admits a nicePin(2)-action with fixed point. Assume
c1(V) is equalto the first Chern class &f modulo torsion ang, (V+W —T M)

is a torsion element. Then tt#&-action induced by < Pin(2) can be lifted
to the Spinc-structure andV and W in such a way thap®(M; V, W)s = 0.

Proof. Sinceb,(M) = 0 the inducedS*-action lifts to theSpin®-structure by
Proposition 3.3. LeL — M denote one of the complex line bundles occurring
as a summand df or W. By Proposition 3.6 thein(2)-action lifts toL. We fix
a lift of the Pin(2)-action to each complex line bundle occurring as a summand
inVorWw.

Nextwe consider the equivariantclgsgV +W —T M) p;,2). By assumption
the restriction of this class t®f is zero after passing to rational cohomology.
The argument in the proof of Proposition 3.7 applies to show that

p(VH+W—=TM)g =r*T-x?
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modulo torsion, wherd is an integer. At the fixed poinpr € M*"? the
tangent bundle reduces to a non-trivial ré&lrepresentation and may be (non-
canonically) identified with a complex representation with charagter”:. At

pt aline bundleL; of V (resp.W) reduces to a complex one dimensioSa
representation with charactet (resp.A”). Thus the restriction of

p1(V+ W —TM)q to pt is equal to

T x*= (Za,z—l-Zbiz—Zmiz) - x%,

wherex is a generator off%(BS*; Z). Since the restriction of a complex one-
dimensionalPin(2)-representation t6? is a trivial representation, = b; = 0.
ThusZ is a negative number and Theorem 2.2 gives the vanishing of

©*(M; V, W) O

Proof of Theorem 4.2t follows from the ring structure oH*(M; Z/27) and
the Wu formulas thatw,(M) = (m + 1) - x mod 2. The relatiornp:(M) =
wo(M)? mod 2 impliesb = m + 1 mod 2. SinceH3(M; Z) is zeroM admits

a Spin®-structure and any class- x,a = m + 1 mod 2, can be realized as the
first Chern class of &pinC-structure ofM.

Note that thePin(2)-action has a fixed point. lfz is odd this is part of
the assumptions. Iz is even this follows from Lemma 3.8 since the Euler
characteristic oM is odd. Letpr € M*"?,

We will now show that the assumptién> m + 1 leads to a contradiction.
Letb > m + 3. Choose aSpinc-structure onM with ¢;(M) = (m + Dx.
Sinceb; (M) = 0 the induceds*-action onM lifts to any Spin°-structure (see
Proposition 3.3). LeL,,, denote the complex line bundle with first Chern class
equal tornx. We consider the bundleg = Ly, + m — 1) - L, and W =
(b—m —3)-L,. Thenci (V) = c1(M), the vector bundleW is spin and
p1(V+W —TM) = 0. By Theorem 4.4 th&*-action lifts to theSpin°-structure
andV andW in such away thap®(M; V, W) = 0. By Corollary 2.3 we have

<l_[ (x—> (€2 —e )" (e e ) [M]> =0,

i=1 \€2 —e 2

where+xq, ... , £x, denote the formal roots o¥/. So (x™, [M]) = 0 which
gives a contradiction. Hencke,< m + 1.

Next we want to show thdt = m + 1 impliesp(M) = (1+ x?)"*1, This is
trivial for m = 1 and follows forn = 2 from the signature theorem (cf. [Hi56]).
So assume: > 3andb =m + 1. Let

p A P —p1  Tp?—4p;
A + A1+ A + + >4 + 5760

+...
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denote the multiplicative series foy (e¥/2 — e=*/2), i.e. A is equal to
]_[ﬁzl(x,-/(e)‘f/2 — e7/2)) after replacingp; by the j-th elementary symmetric
functioninx?, ... , x2 Let A(M) be the series obtained by substituting jith
Pontrjagin class aff for p;. We use Theorem 4.4 6, := Lo +(m—3—2k)-L,
andW, :=2k-L,,wherek =0,1, ..., [’";3]. For eachk we choose &pin®-
structure with first Chern class equaki@V;). Then Theorem 4.4 and Corollary

2.3 give

<A(M) (e —e ) (3 — e 3) L (03 4 o3, [M]> —0. (2

Fork = O the corresponding identity determings (M) - x2, for k = 1
the corresponding identity determingis(M) - x™~* and so on. Note that the
multiplication map

H?>""*(M;Z) — H*™(M;Z), y+>y-x~,

is injective. So these identities togetherdetermﬁ}ellfl) forj=1,..., [’"T‘l].

The coefficient ofp; in ftj is a non-zero rational number (cf. [Hi56], Sect. 1).
SinceH*(M; Z) has no torsion we conclude that()/) is uniquely determined
by the equations (2) fof = 1, ..., [22].

We will now show that the total Pontrjagin classMfhas the standard form.
Consider first the case odd. Thenp;(M) = 0, j > ’”7*1 for dimensional
reasons. S (M) is already uniquely determined by the equations (2). Since
CP™ admits a non-trivialPin (2)-action with fixed point the same identities also
hold true forC P™. This impliesp(M) = (1 4 x?)"+1,

Next assumen is even. Then all Pontrjagin classes Mf exceptpx (M)
are already determined. The top Pontrjagin clagsM) can be computed from
the other Pontrjagin classes and the signature formula. Here we use the fact
that the coefficient ofp; in the j-th term of the multiplicative series of the
signature genus is non-zero (cf. [Hi56], Sect. 1). So again the total Pontjagin
class ofM is determined. Since all these identities also hold true(¥Br* we
getp(M) = (1 + x?)"+1, O

The last proof can be easily modified to study more general situations, for exam-
ple homotopy complete intersections which support a H&e(2)-action with

fixed point. The next proposition shows that the first Pontrjagin class of such
manifolds cannot be very large. The proof which is essentially contained in the
proof of Theorem 4.2 is left to the reader.

Proposition 4.5. Let M be a2m-dimensionalSpin®-manifold withb1 (M) = 0,
H?(M:;7Z) = Z{x) andx™ # 0. AssumeV/ admits a nicePin(2)-action with
fixed point. Ifp1(M) = b - x?> thenb < m + 1. a
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The proposition may be applied to homotopy complex hypersurfaces. In this
connection we mention the following result of Hattori.

Proposition 4.6. ([Ha78], Prop 3.15) et M be a non-singular hypersurface of
degreed in CP™*1, m > 1. Lett denote the stable almost complex structure
induced from the complex structure &f. If M admits a non-trivialS*-action
which lifts tor thend < m + 3. O

4.3 In this section we consider 4-manifolds with ni&n(2)-action. We use
Theorem 2.2 to determine their intersection form in certain cases.

Let us first take a look at the problem of classifying (non-trivist) and
S3-actions on closed manifolds in low dimensiogs-actions on 3-manifolds
were completely classified by Orlik and Raymond in [OrRa67] §®actions
cf. [As76]). The classification of 4-dimensional manifolds with-action was
given in [As76] and [MePa86]. Such manifolds fall into the classés=+C P2,
homogeneous3-bundles ovess?, S2-bundles oves? and quotients of?-bun-
dles overS? by involutions. It turns out that the classification of 4-manifolds
with St-action is much harder. Fintushel (cf. [Fi77], [Fi78]) reduced it to the
(difficult) classification of “legally-weighted” 3-manifolds. In the simply con-
nected case he and also Yoshida (cf. [Yo78]) gave a classification up to homotopy
4-spheres: Any simply connected 4-manifold withaction is diffeomorphic to
Xk(CP?tm(—CP?)tn(5? x §2), whereX is a homotopy 4-sphere. All these
results are proved using techniques from the theory of transformation groups.

If one restricts to oriented 4-manifolds another tool is available: Since any
such manifold admits &pin°-structure one may try to use the Lefschetz fixed
point formula (cf. [AtSell68], [AtSillI68]) for theSpin®-Dirac operator to char-
acterizeG-actions on oriented 4-manifolds. In [Ha78] Hattori proved the van-
ishing of the equivariant index of th&pin®-Dirac operator in certain cases and
used this result to derive the following

Proposition 4.7. ([Ha78], Prop. 3.14)Let M be an oriented4-manifold with
b1(M) = 0 and lett be anS*-equivariant almost complex structure @. If
n € N dividescy () thenn < 3. If n = 3 then the Euler characteristic o¥f is
equal to three times the signature df, i.e.e(M) = 3sign(M). O

The second part of this theorem may be rephrased in terms of the intersection form
S of M: If c1(7) is divisible by 3 thers is isomorphic ta2g + 1)(+1) ® g (—1),

i.e. S is isomorphic to the intersection form @2g + 1)(CP?)tqg(—CP?), for

some non-negative integerNext we illustrate how Theorem 2.2 may be applied

to 4-manifold with nicePin(2)-action.

Proposition 4.8. Let M be an orientedl-manifold with nicePin(2)-action. Let
S denote the intersection form. Assume the (2)-action has a fixed point.
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1. ThenS is of odd type or trivial.
2. If M admits aPin(2)-equivariantSpin®-structure thers is definite.

Proof. In the course of the proof we will use the fact that the indus&action

lifts to any Spin°-structure: Le be the principal bundle of orthonormal frames.
We lift the Pin(2)-action toQ via differentials. LetP be aSpin®-structure and

& . P — Q the associated (1)-principal bundle. We will show that the first
Chern class of is in the image ofH%(Qg; Z) — H?(Q; Z). To this end we
compare the Leray-Serre spectral sequehgds} and{E/7} for Q1 — BS?!

and Qpin2y — BPin(2), respectively. Note that in both spectral sequences
all differentials restricted to the subgroup of bi-deg(8g2) are trivial except
maybe the second one. Since the action has a fixed poir(®) acts trivially on
H(Q; 7). Thus these differentials are given by

H2(0;7) = ES? % B2 = HX(BSY; HY(Q: 7)) = ZM™ and

H2(Q; 7) = EQ? -2 E2' = H2(BPin(2); HY(Q: 7)) = (Z/27)"™.
Sinced, factorizes oved, and the homomorphism induced By — Pin(2) we
conclude thatl, is zero onES?. Thus H2(Q1; Z) — H?(Q: Z) is surjective.
By Theorem 3.1 and Theorem 3.2 thi-action lifts to P.

Ad 1: Assume the intersection forfis even. We want to show thatis trivial,
i.e.bo(M) = 0. SinceS is evenw,(M) is the mod 2 reduction of an integral
torsion class (cf. [HiH058]). We chooseSainC-structurePy on M with ¢1(Po)
a torsion class and lift th&*-action to Py. As remarked earlier the argument in
[AtHi70] shows that the index of th8pin®-Dirac operatob, for Py vanishes:

ind(dc) = (e /2. (1~ py(M)/24), [M]) = 0.

Sincec; (Py) is a torsion clasg1 (M) vanishes and by the signature theorem (cf.
[Hi56]) the signatureign(M) = (p1(M)/3, [M]) vanishes, too.

If b,(M) # 0 the intersection form must be indefinite and we may choose
classes:, y € H3(M; Z) with x> = y2 = 0 andxy # 0. LetV = Ly, + Ly,
whereL, denotes the complex line bundle with first Chern clags/ Proposition
3.6thePin(2)-actionliftsto each line bundle &f. Next choose &pin°-structure
P with ¢1(P) = ¢1(V) modulo torsion and lift thes*-action to P. Note that
p1(V) = 0. We are in the position to apply Corollary 2.3 fdrand P as above
andW = 0. It follows thatxy = 0 contradicting the choice of andy. Thus
bo(M) = 0 andS is trivial.

Ad 2: Assumes is indefinite. By the first par§ is odd and hence of the form
p(+1)@q(—1) withbasisxy, ... ,x,andys, ... , y,. LetL. denote the complex
line bundle overM induced by the giverPin(2)-equivariantSpin°-structure.
Thency(L.) reduces taw,(M) modulo 2. Sincel. is Pin(2)-equivariant the
differential H2(M; Z) — H?*(BPin(2); HY(M; Z)) = (Z/27Z)"*™ vanishes
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onci(L.) and any other integral lift ofv,(M). Letu = > x; + Y y; modulo
torsion with mod 2 reduction equalte (M) and liftthe Pin(2)-action toL,,. By
Proposition 3.6 théin(2)-action also lifts tal,,, andL,,,. LetV = L, + Lo,
andletW = L,+L,+L,,,. Finally we choose asi'-equivariantSpin®-structure
on M with first Chern class equal g (V).

By the signature theorem (cf. [Hi56]p1(M), [M]) = 3(p — g). Since
p1(V + W) = p1(M) we may apply Corollary 2.3 fovV, W and P as above to
derive the contradiction? = 0. Thuss is definite. O

One may use Donaldson’s deep classification theorem [Do87] (any negative
definite intersection form of an oriented closed 4-manifold is of the forh) ®
... ® (—1) to improve the last result. Details are left to the reader.

Proposition 4.9. Let M be an orientedd-manifold with nicePin(2)-action.
Assume thé@in(2)-action has a fixed point antf admits aPin(2)-equivariant
Spin®-structure. Therb,(M) < 1, i.e. the intersection form is trivial or of the

form (+1). O
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